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Periodic nanostructures can display the dynamics of arrays of atoms while enabling the tuning of interactions
in ways not normally possible in nature. We examine one-dimensional �1D� arrays of a “synthetic atom,” a
one-dimensional ring with a nearest-neighbor Coulomb interaction. We consider the classical limit first, finding
that arrays of singly charged rings possess antiferroelectric order at low temperatures when the charge is
discrete, but that they do not order when the charge is treated as a continuous classical fluid. In the quantum
limit Monte Carlo simulation suggests that the system undergoes a quantum phase transition as the interaction
strength is increased. This is supported by mapping the system to the 1D transverse field Ising model. Finally,
we examine the effect of magnetic fields. We find that a magnetic field can alter the electrostatic phase
transition producing a ferroelectric ground state, solely through its effect of shifting the eigenenergies of the
quantum problem.
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I. INTRODUCTION

Fabrication of micro- and nanosized structures such as
quantum dots, wires and rings has made it possible for physi-
cists to examine new ideas in electronic devices. These small
size devices act as artificial atoms with spectra and shell
structures similar to those of real atoms.1 However, it is pos-
sible to control the properties of these synthetic atoms in a
way that is impossible with real ones. For example, a regular
atomic orbital is three dimensional and one has limited con-
trol over the electronic wave function. In contrast, by con-
trolling the shape of a quantum dot we can distort the wave
function, controlling its polarizability and its interaction with
adjacent dots. While the properties of periodic arrays of at-
oms are well understood in solid-state physics, we have a
new playing field—periodic arrays of nanostructures—in
which we have an unprecedented control of the “atomic
states.”

The focus of this paper is on periodic one-dimensional
�1D� arrays of nanorings. We chose this system for two rea-
sons. First, quantum rings display interesting phenomena
�e.g., persistent currents2–5� which are not found in dots. The
basic difference between the ring geometry and a quantum
dot is the excluded middle which confines the electron in a
ring to a narrow spatially periodic channel. This compact,
periodic geometry can allow dynamics not found in other
systems.6 Second, it has become possible to create extremely
small rings. These arrays of nanorings can be fabricated ei-
ther by dry etching7 or by using molecular beam epitaxy
�MBE� techniques to foster self-assembled InGaAs/GaAs
rings. The size of these nanorings is �30 nm for outer ra-
dius and �10 nm for inner radius for self-assembled
InGaAs/GaAs rings.8–10 These rings will often form in small
clusters. Such techniques not only produce extremely small
rings but also make it easy to make periodic arrays of small
rings.

In this paper we consider an ideal array of 1D rings at
zero temperature, each carrying a single charge. The rings
are sufficiently close together that there is a Coulomb inter-
action between the electrons, but separated enough so that
the tunneling between rings can be neglected,11 as discussed
in Sec. II. In Sec. III we consider the classical case and see
how different assumptions allow for symmetric or symmetry
breaking ground states. Section IV contains the main results
of this work, where we show that there is a quantum phase
transition in a 1D array of rings for B=0. We show this both
through Monte Carlo simulation of 1+1D classical statistical
representation of the problem as well as mapping it onto the
1D transverse field Ising �TFI� model. The polarization pat-
tern is antiferroelectric. In Sec. V we examine how this tran-
sition is affected by magnetic fields. We conclude in Sec. VI
by summarizing results and discussing possible applications.

II. MODEL

We consider a one-dimensional array of singly charged
narrow quantum rings with radius R and center-to-center
separation of D �Fig. 1�. The width of each ring is much
smaller than its inner radius so that we need only consider
the one-dimensional movement of the electron around the
ring. While the rings are isolated from each other so that
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FIG. 1. �Color online� A schematic picture of the ground state of
classical point electrons for 1D array of rings. The ring radius is R
and the separation is D. The 1D ordering is antiferroelectric for the
infinite size system and thus has a double degenerate ground state.
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there is no charge transfer between rings, the rings still in-
teract electrostatically with their nearest neighbors.11 While
in principle the Coulomb interaction is long range, we as-
sume that there is sufficient screening that next-nearest-
neighbor interactions can be neglected.

We also neglect tunneling between rings. This is reason-
able since the physical realizations discussed above produce
rings that are not in tunneling contact. Tunneling will be
exponentially suppressed with D, so that for spatially distinct
rings it will be minimal.

All the phenomena explained in this article will only ap-
pear in experiments if the electrons do not lose their quantum
mechanical phase, i.e., the ring’s perimeter has to be smaller
than the electron’s coherence length �2�R�L�� and the tem-
perature has to be lower than the dephasing temperature
�T�T��. In each ring the confinement energy of the electron
scales as Eq=�2 /2m�R2; this energy opposes localization of
the wave function in the ring. The inter-ring Coulomb repul-
sion, which scales as Ec=e2 /D, tries to localize the wave
function. Electrons are repelled from regions of the ring
where it is too close to the charges on neighboring rings. The
competition between these two physical scales creates a
quantum phase transition in the array from a localized state
to extended state as we will see below.

III. CLASSICAL RESULTS

Before solving a quantum mechanical problem, it is often
helpful to look at the similar classical case which is usually
easier to solve. Below we consider two classical models, one
in which the classical charges are treated as ideal points, and
the second in which they are treated as a continuous fluid.

A. Classical point charges

The classical model considers one charged point particle
per ring with only nearest-neighbor Coulomb interaction.
Unlike the quantum mechanical case, there is only one en-
ergy scale in the classical problem, the Coulomb energy Ec
=e2 /D. The energy of a 1D array is given by U1D
=�i=1

N e2 / �r�i��i�−r�i+1��i+1��, where �i is the location of the i-th
electron as measured from the horizontal axis. In the dipole
approximation we can write this as

U1D − U0 �
�2e2

2D
�

i

�3 cos 2�i + cos��i − �i+1� − 3 cos��i

+ �i+1�� =
�2e2

D
�

i
	s�i · s�i+1 +

3

2
�D̂ · �s�i − s�i+1��2
 ,

�1�

where ��R /D and U0 is a constant, U0� Ne2

D �1+ �2

2 �. In the
second expression we identify the position of each charge by
a vector s�i in the two-dimensional �2D� plane pointing from
the center of the i-th ring to the charge on that ring. The unit

vector D̂ lies on the horizontal axis.

The cos 2� �or �D̂ ·s��2� term explicitly breaks the rota-
tional symmetry, driving the system from XY to Ising-type
behavior. The Heisenberg term in the last line of Eq. �1�

drives the system ferroelectric �FE� at zero temperature,
while the second and larger term favors states where neigh-
bors point in the opposite direction. Thus, the system at zero
temperature orders in an antiferroelectric �AFE� pattern �Fig.
1� in one dimension. Our numerical Monte Carlo simulations
of the exact Coulomb interaction also verify the existence of
such a minimum energy configuration in the classical finite-
size arrays.

We can examine the stability of the AFE state by finding
the higher energy modes of the system. We expand the en-
ergy function �Eq. �1�� to quadratic order in displacement
angle around the AFE configuration using �i= �−1�i �

2 +�i.
The AFE configuration has a basis with two sites so we find
two independent normal modes with frequencies:

	

�1D��k� = 2	0�4 
 2 cos

kD

2
, �2�

where 	0��e2 /m�D3. Both the modes are gapped since the
Ising-type term provides the harmonic restoring force at each
site. The modes are shown in Fig. 2. Normal modes are
found to be independent of the ring radius.

B. Classical charge fluid

Another interesting classical limit of our ring problem is
when there is a classical self-interacting fluid of charge on
each ring while the nearest-neighbor fluids are still interact-
ing with each other. To find the minimum energy distribution
of charge density on each ring we define an angular depen-
dent charge density �i��i� on each ring, where 
�i��i�d�i=1.
We are looking for the minimal solution to the variational
quantity:

I =
1

2
� d�� d���

�ij�

�i���� j����
�r�i − r� j�

+ ��
i
� d��i��� . �3�

For a 1D ring this expression is divergent due to self-energy.
We can regularize this in several ways. One method is to
introduce a short distance cutoff 
 to the Coulomb interac-
tion, discretize the integral equation, and then solve the prob-
lem numerically. An approximate analytic solution can then
be obtained by Fourier expanding the distribution, keeping
only the first three modes.
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FIG. 2. Normal modes of the 1D ring array with gaps of �solid
line, inset �a�� 2�2	0 and �dashed line, inset �b�� 2�6	0, where
	0=�e2 /m�D3.
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For 1D array with periodic boundary condition we find
that the amplitude of the nontrivial Fourier mode as a func-
tion of 
 and ��R /D for � is given by

�̂�2� �
− 3��3�2 − 5
2�

4�− 2 + 4 log��/
��
. �4�

We compare this analytic result with the numerical diagonal-
ization of Eq. �3� in Fig. 3. As we can see in Fig. 3 the
minimum energy configuration of the 1D array of charge
fluid does not break the up-down symmetry of the system.

IV. QUANTUM RESULTS FOR B=0

At first glance the quantum mechanical wave function of
a charged particle resembles the classical charge fluid. Al-
though the wave function does not have a self-interaction,
the quantum particle has a kinetic energy which opposes lo-
calization, making the analogy to charge fluid even stronger.
Unlike the classical case, the quantum problem has two com-
peting energy scales: the quantum kinetic energy, Eq, pre-
venting localization and the Coulomb interaction energy, Ec,
trying to force the charges away from each other. At Eq
�Ec we expect charge localization on each ring and at Eq
�Ec we expect no localization of charge. However, it is not
a priori obvious whether the charge localization �system po-
larization� breaks symmetry or not, whether this localization
is a smooth function of the external parameters, and if it is a
phase transition, what is the exact nature of this transition.

A. Variational calculation

As a first step we can use a simple variational wave func-
tion to find the polarization behavior of the system in ground
state. The dimensionless Hamiltonian of an array of one-
dimensional rings with radius R is given by

Ĥ = − �
i

�2

��i
2 + ��

�ij�

1

�r�i���i� − r� j��� j��
, �5�

where r��=r� /R and �=Ec /Eq is the interaction strength and
the energy is measured in units of Eq=�2 /2mR2.

To find the ground-state energy of the 1D array we em-
ploy a simple ansatz for the wave function of each sublattice:

�A���=
�1−y2

�2�
+ y

�2�
cos��−�� and �B���=

�1−y2

�2�
− y

�2�
cos��−��

alternately. The ground-state values of y and � are obtained
by minimizing the energy �Eq. �5��. Using dipole approxima-
tion for Coulomb interaction we find

y��,�� = �1

4
�11 −

4

��2
for � � �c���

0 � � �c���
� �6�

and �=� /2, where the critical value of the interaction is
given by �c���= 4

11�−2. To find out the degree of polarization
we define the staggered polarization vector as

P� s = �
i

�− 1�i� d���i����2r�i��� . �7�

Using variational results the staggered polarization of the
system is as follows:

P� s��,�� = �1

8
�4 + 5��2

2��2 �1/2�11 −
4

��2�1/2
D̂� � � �c

0 � � �c
� ,

�8�

where D̂� is the unit vector perpendicular to the common
axis of the rings �Fig. 1� and �c is defined in Eq. �6�.

As we can see, variational calculation suggests that the
ground state of the 1D array of rings antiferroelecrically po-
larizes in perpendicular direction at high interaction strengths
while at lower values the wave functions are not localized,
hence the system has no polarization. The validity of this
result will be confirmed in next sections using more exact
and reliable methods of calculation.

B. Hartree approximation

The rings considered here are well separated with exactly
one electron on each ring. Under this condition and because
of strong Coulomb repulsion the effect of inter-ring transfer
of electrons and overlap of wave functions is small. We can
therefore neglect the inter-ring transfer from our calculations.
Since without overlap the electrons do not have any ex-
change interaction, the Hartree approximation is exact for
this problem.12

We can decompose the wave function in each ring into a
limited number of Fourier modes, �i���=�n=−n0

n0 cnein�, and
then solve the system numerically in the Hartree approxima-
tion. We impose the periodic boundary conditions on the
array and by an iterative self-consistent method we find the
ground-state wave function of the rings. In Fig. 4 we can see
the numerical results of the polarization and energy change
of the 1D array of rings for different number of Fourier
modes using exact Coulomb interaction and also its agree-
ment with the variational calculation when we restrict the
number of Fourier modes to n� �−1,0 ,1�. The results are
changed little when we increase the number of Fourier
modes mostly in the high coupling regime.

FIG. 3. �Color online� A plot of the second Fourier amplitude of
the classical charge distribution on a ring in a 1D horizontal array.
The circles are numerical results; the solid line is a scaled plot of
Eq. �4�. Scaling is required since the analytic result neglects all
higher Fourier modes. Inset: a sketch of the charge distribution that
corresponds to this Fourier mode. Note that the symmetry of the
array is not broken by the charge distribution.
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All the above results suggest that there is transition from
unpolarized to polarized state at zero temperature by chang-
ing the coupling. By looking at the behavior of polarization
when the number of Fourier modes increases we realize that
this transition tends to be sharper and sharper for higher
number of Fourier modes suggesting a true phase transition
in the system. If true, this transition would be a sudden
change in ground state of the quantum system at zero tem-
perature known as quantum phase transition.13 We demon-
strate that this is the case and determine the universality class
of the transition in Sec. IV C using the Monte Carlo simula-
tion.

C. Monte Carlo simulation

It is well known that we can write the quantum partition

function of a quantum system, Z=Tr e−�Ĥ, as the sum over
all paths taken by the system in imaginary time defined by
the scale ��. If the quantum system is D dimensional then
the partition function will look like the path integral of a D
+1–dimensional classical system in which the extra dimen-
sion is the time direction 0�����. At zero temperature �
→� the classical system is truly D+1 dimensional. One can
derive an effective Hamiltonian for such a classical system
from the quantum Hamiltonian using a complete set of basis
states. In this classical system the parameters of the quantum
system �in our case �� is a control knob like temperature. We
can use Monte Carlo simulation of such a classical system
and find out the universal behavior of the quantum system.

To develop a 1+1–dimensional classical theory for
our 1D ring array we first stagger the order parameter,
�i→ �−1�i�i so that we can analyze the Monte Carlo results
easily. We also use dipole approximation for the Coulomb

interaction. Consequently, we can write the Hamiltonian of
the system as

Ĥ =
Ec

2 �
j=1

N �− i
�

�� j
�2

− EJ�
j=1

N

V̂ , �9�

in which Ec=�2 /mR2 and EJ=e2�2 /2D. The standard
derivation14 using the Villain approximation15,16 tells us that
the 1+1D classical partition function equivalent to the 1D
interacting quantum ring array at zero temperature is

Z �� D�����
a=1

N

exp	 �

Ec��
�
k=1

N

cos��k��a+1� − �k��a��

+
��EJ

�
�
k=1

N

Vk��a�
 , �10�

where D�����a=1
N D���a� and

Vk��a� = 3 cos��k��a� − �k+1��a�� + cos��k��a� + �k+1��a��

− 3 cos��k��a� − �k+1��a��cos��k��a� + �k+1��a�� .

�11�

The parameter � has the dimension of time and N��=��. It
can be shown that the field ��x ,�� obeys the periodic bound-
ary condition, ���+���=���� �Ref. 17�. We will also assume
periodic boundary condition in the space direction all over
the simulation.

By defining the spin vector S� i= �cos �i , sin �i� we can in-
terpret Eq. �10� as a two-dimensional classical spin model.
Our early calculations suggested that the system of 1D rings
has a transition from the unpolarized to the AFE state. In this
classical analog because we have already staggered the order
parameter we expect to see a transition from unpolarized to
ferromagnetically polarized state �FE�. Close to this transi-

tion the spatial variation of the order parameter S� is smooth
so we can approximate Eq. �11� as follows:

Vk��a� � 3 cos��k��a� − �k+1��a�� − 2 cos 2�k��a� . �12�

Using the above potential finally, the classical partition func-
tion looks like

Z �� D����exp	K�
�ij�

cos��i − � j� −
2K

3 �
i

cos 2�i
 ,

�13�

where i and j run over an infinite 2D square lattice and we
have determined �� to identify the two couplings in Eq. �10�
as K=�3EJ

Ec
. Equation �13� is a 2D XY model with a symme-

try breaking field which is 2/3 the XY coupling. Our Monte
Carlo analysis shows that this model has a continuous phase
transition. The order parameter of this system is the total
magnetization density equivalent to the total staggered polar-
ization of the 1D ring array:

m� � �S�� ↔ P� s, �14�

where the average on the left-hand side is the thermody-
namic average over the infinite size lattice.
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FIG. 4. �Color online� A comparison of numerical and analytical
calculations of the staggered polarization and energy as a function
of � in a 1D quantum ring array obtained in the Hartree approxi-
mation. The numerical results for the case include Fourier modes
�m��1 �triangles� and �m��6 �boxes�. The solid line is the analytic
result assuming �m��1. The quantity � is a measure of the compe-
tition between the Coulomb interaction and the quantum kinetic
energy.
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The fluctuations in this system is controlled by K which is
the analog of 1 /T in real classical systems. We can measure
the analog of specific heat of the system using

C̃v =
1

N2 ��E2� − �E�2� �15�

in which �.� is the average over an ensemble and E is the
total energy of the N�N system. This quantity diverges at
the critical point of the infinite system undergoing a continu-
ous phase transition. Figure 5 shows the change in the spe-
cific heat of our 1+1D system in terms of the parameter K
for different lattice sizes. As we can see, at Kc the peak gets
sharper and sharper with increasing lattice size L. An ex-
trapolation of the point of the maximum of Cv, Kc�L� to
L−1=0 determines the approximate critical point of the infi-
nite lattice �Fig. 6�. Also, an extrapolation of m�L ,K� for
different values of K in Fig. 7 shows that a real continuous
phase transition happens in the infinite size system.

The effective classical system derived here does not fully
explain all the physical aspects of the 1D quantum system
mainly because of the approximations used to derive the path
integral. However, we believe that, close to the critical re-
gion, these approximations do not play any role in the gen-
eral behavior of the system and the universality class remains
unchanged. Hence, using the finite-size scaling method we
can determine the critical exponents of the classical system

and determine the universality class of the actual quantum
system.

1. Finite-size scaling of the 1+1D system

One of the best parameters for examining the phase tran-
sition and finding the universal exponents with finite-size
scaling is the dimensionless Binder ratio,

gL =
�m4�
�m2�2 , �16�

defined for a system with size L. In the disordered phase K
�Kc the correlation length � is finite so for L�� the distri-
bution of m is Gaussian around m=0 with the width
�N−1/2�L−d/2 so g→0. On the other hand, for K�Kc where
�m� is finite, gL approaches a constant as L→�. The varia-
tion of gL with K becomes sharper and sharper as L in-
creases, however, all the g’s cross at the transition point Kc.
The variation is given by the following finite-size scaling
function:

gL�K� = g̃�L1/��K − Kc�� , �17�

where g̃ is a scaling function which depends on L and K only
in that particular form. By using the finite-size data we can
try to find a data collapse and by calculating the standard
deviation find the best exponent � fitting to the collapsed
function. Figure 8 shows the Binder ratio for different lattice
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FIG. 5. �Color online� Monte Carlo results of the C̃v=�E2 /N2

for different system sizes. The system is a 1+1D classical equiva-
lent of a 1D quantum ring array at zero temperature.
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FIG. 6. Plot of critical coupling Kc�L� at different system sizes
taken from the Cv plots. The solid line is a linear fit to the data
indicating Kc����0.699.
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FIG. 7. �Color online� Extrapolation of the total magnetization
density of the 1+1D classical system to infinite size at couplings
K /Kc���=1.45 �empty boxes�, 1.32 �triangles�, 1.03 �polygons�,
0.74 �filled boxes�, 0.45 �stars�, and 0.16 �crosses�. The solid lines
are linear fit to each set of data.
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FIG. 8. �Color online� Plots of Binder ratio for different system
sizes. The behavior is sharper at larger sizes.
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sizes. Figure 9 shows the collapsed data and Fig. 10 shows
the best exponent is �=0.99
0.01. The error is estimated
from the mesh of the numerical calculation.

The scaling for the order parameter �m� is

m = L−�/�X0�L1/��K − Kc�� , �18�

where X0 is a function of x=L1/��K−Kc� only and � is one
of the universal scaling exponents of the system. To deter-
mine the universal exponent � we plot L�/� vs x for different
sizes �Fig. 11�. Figures 12 and 13 show the collapse of dif-
ferent data sets and the standard deviation for different ex-
ponents, respectively, which shows the best estimation is �
=0.125
 .005, or 1/8.

2. Universality class

The universal exponents extracted from the finite-size
data indicate that our 1+1D classical XY model in the sym-
metry breaking field is in the universality class of 2D classi-
cal Ising model, hence the nature of quantum phase transi-
tion of our 1D quantum ring array is Ising-type. The
Coulomb repulsion forces the electrons to alternate staying
on the top and bottom of the rings. However, the quantum
kinetic energy tries to avoid localization. This kinetic energy
causes the electrons to tunnel from top to bottom of the ring
hence destroying the antiferroelectric order. This ordering
behavior shows up in the probability distribution on each
ring. Figure 14 shows the energy of each electron with the
wave function �d���=x+y cos�2�� compared to when the
wave function is a constant all around the ring. The wave
function �d has two maxima on the top and bottom of the
ring which means the electron is fluctuating up and down. As

we can see by increasing the coupling the lower energy state
selected by the exact Hartree calculations �dots� gradually
matches �d instead of the constant wave function. This be-
havior persists in a range of couplings close but smaller than
the critical coupling, i.e., in disordered region ���c. Need-
less to say, after transition point the ground-state wave func-
tion is no longer �d and the system starts to excite more
angular momentum eigenstates �Fourier modes�.

All the above discussion suggests that the nature of the
antiferroelectric transition is not just the simple 2D Ising but
is similar to 1D TFI which has a quantum phase transition at
zero temperature in the same universality class as 2D Ising.
We can develop an effective 1D TFI Hamiltonian for our ring
array in the dipole approximation. In this approximation we
can write down the Hamiltonian �9� as follows:

Ĥ = Ĥ0 + V̂ ,

Ĥ0 = �
i
��− i

�

��i
�2

+ 3��2 cos 2�i� ,

V̂ = − ��2�
i

�3 cos��i + �i+1� + cos��i − �i+1�� . �19�

The cos 2� term in Hamiltonian Ĥ0 has two minima at the
top and bottom of the ring. Figure 15 shows the potential and
the two lowest energy states of it with energies E0�E1. The
rate of tunneling from top to bottom or vice versa is deter-

mined by ��E1−E0. The potential V̂ tries to align the elec-
trons hence it acts like the Ising interaction. A more rigorous
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FIG. 11. �Color online� Monte Carlo results of average magne-
tization of the 1+1D classical system for different system sizes.
The change in magnetization tends to be sharper as the system size
grows.
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FIG. 12. �Color online� Collapse of scaled magnetization data
sets for �=1 and �=1 /8 in the critical region.
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FIG. 9. �Color online� Collapse of Binder plots at the critical
region. The best collapse is obtained for �=1.01
 .01.
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FIG. 10. Standard deviation of the set of scaled plots of Binder
ratio for different exponents. The case for �=1 is the best choice
which is plotted in Fig. 9.
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derivation using Holstein-Primakov bosons18 shows that the
projection of the Hamiltonian H into the subspace of the

ground and first excited states of Ĥ0 can be written as �see
Appendix�

Ĥ � ��
i=1

N

�i
x − J�

i=1

N

�i
z�i+1

z , �20�

in which �’s are Pauli spin matrices and J=8��2. Numerical

diagonalization of Ĥ0 tells us that ��1−0.1��2 for small �.
Close to transition the Coulomb repulsion is not strong

enough to excite the electrons to higher states, consequently
the TFI model in Eq. �20� is valid and indicated the nature of
transition of the 1D ring array.

V. QUANTUM RINGS TRANSITIONS FOR BÅ0

Y. Aharonov and D. Bohm �AB� have predicted that the
wave function of an electron moving in a vector potential

A� �x� along the path C acquires a phase shift:

�� =
e

�c
�

C

A� · d�r . �21�

AB predicted that this phase shift can be observable. When
an electron is confined on a closed path like the case of

charged ring threaded by magnetic flux �, the phase shift
after one 2� rotation would be

�� =
e

�c
� A� · d�r = �/�0, �22�

where �0=hc /e�4.135�10−7 G.cm2 is the quantum of
flux. The phase shift above has been observed in numerous
experiments and different devices including the experiments
of persistent current and excitons in quantum rings.19 In this
section we show how magnetic field changes the behavior of
polarization.

The Hamiltonian of an electron in a 1D ring threaded by a
constant uniform magnetic field Bẑ �the ring is in the x-y
plane� is

Ĥ =
�2

2mR2�i
�

��
+

�

�0
� �23�

in which the choice of gauge: A� = B
2 �−y ,x ,0�, the momentum

is in polar coordinates: p̂=−i �

R
�
�� and the eigenfunctions are

periodic: ���+2��=����. The eigenenergies of Eq. �23� will
be

En =
�2

2mR2 �n − �/�0�2 �24�

in which n is an integer. By changing the gauge A� →A�

−�� wave functions undergo a phase change �→eie/�c��.
For example, we can use the gauge transformation with the
choice of �= �BR2 /2�� to remove the vector potential from
Eq. �23� but at the same time we have to shift the phase of
the wave functions to e−i�/�0��. As a result the eigenfunc-
tions change:

�n��� =
1

�2�
ei�n−�/�0��. �25�

This eigenfunction however, has a different boundary condi-
tion than the previous one:
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0.3

0.35

Σ

FIG. 13. Standard deviation of the set of scaled plots of magne-
tization for fixed �=1 and different exponent �. The case for �
=1 /8 is the best choice which is plotted in Fig. 12.
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∆
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E
0

FIG. 14. �Color online� Plot of the energy of the interacting
quantum ring array when all the wave functions are constant around
the ring �dashed� or all are in the form of �d=a+b cos 2� �solid�.
The points are the actual results coming out of the numerical Har-
tree calculation indicating that �d is the selected behavior for �
��c�8.
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��������
2
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FIG. 15. �Color online� Plot of the cos 2� potential around a
ring �the thick solid line�, the ground and first excited state of this
potential �thin solid lines� coming out of a simple numerical Schro-
dinger equation solver and the up and down states �dashed lines�
constructed from the two eigenstates �see Appendix�. The scale of
the potential is exaggerated for easier comparison.
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��� + 2�� = e2�i�/�0���� �26�

but as one physically expects the eigenenergies are not
changed. The ground-state energy of the interacting quantum
ring array in the magnetic flux � can be written as

E0��,�� = �
n=−n0

n0

�cn�2�n − �/�0�2

+ ��
�ij�
� d�d��

��0����2��0�����2

�r�i���� − r� j������
, �27�

where �0���=ei�/�0��n=−n0

n0 cnein� is the ground-state wave
function expanded in the free Hamiltonian basis states. As
we can see in Eq. �27�, the only part that is affected by the
AB phase is the kinetic energy and the potential energy is not
sensitive to the phase. The energy calculated in Eq. �27� is
periodic in �0 since when �=�0=1 we can rearrange the
infinite sum and show that the value of the kinetic energy is
equal to its value at �=0. This is due to the well-known fact
that the physics of quantum rings does not change at integer
flux quanta. For infinite n0 this argument is true at any range
of magnetic flux; in our numerical calculations where we
have used a finite number of Fourier modes E0 is periodic
only in a finite range approximately given by 0���n0�0.
In Fig. 17 we can see the periodic behavior of the ground-
state energy of the ring array as magnetic flux changes.

The results of our numerical Hartree calculations indicate
that in a 1D ring array in which each ring is threaded by a
magnetic flux � the polarization pattern changes from unpo-
larized to ferroelectric at half-integer flux quantum. Figure
16 shows the behavior of Px, the component of the total

polarization vector P� =�i 
0
2�d���i����2r�i��� in the direction

of the ring’s common axis at half-flux quantum. This plot
shows that at ���c the wave function has an unbalanced
distribution around each ring. However, the total polarization
vanishes at higher values of interaction where the wave func-
tion distribution becomes antiferroelectrically polarized in
the array. The finite polarization at small interaction
strengths has a ferroelectric pattern which is degenerate left
or right. From this result we can see that the physics of
quantum ring arrays changes at half-integer flux quantum.
The total staggered polarization in the ŷ direction perpen-

dicular to the common axis of the rings starts to build up at
���c as in the case of no magnetic field. We can explain this
phenomenon of finite transverse polarization due to mag-
netic field in different approaches.

We can use a simple perturbative discussion to understand
this behavior qualitatively. Equation �19� which is the dipole
approximation of the total Hamiltonian will modify in pres-
ence of a magnetic flux as follows:

Ĥ = Ĥ0 + V̂ ,

Ĥ0 = �
i
��− i

�

��i
−

�

�0
�2

+ 3��2 cos 2�i� ,

V̂ = − ��2�
i

�3 cos��i + �i+1� + cos��i − �i+1�� . �28�

In the above equation the kinetic energy Hamiltonian has a
degenerate ground state. For example at half filling, � /�0

= 1
2 , n=0 and n=1 levels are degenerate unlike the case of

zero magnetic field in which the ground state is unique and at
n=0. By adding the symmetry breaking term cos 2� in the
case of zero flux the electron gains enough energy to excite
to the next higher level. This excitation causes the electron to

destroy any localization in the range where V̂ is not strong
enough yet. However, when there is a finite magnetic field
the cos 2� cannot lift the degeneracy between n=0 and n

=1 when � is small. In this case the ground state of Ĥ0
remains degenerate �Fig. 17�. As long as � is small the per-
turbative two-body potential in Eq. �28� cannot excite the
electron to higher levels and the kinetic energy of the elec-
tron freezes. When this happens the electrons behave classi-
cally and choose a wave function that minimizes the poten-

tial V̂. In Fig. 18 we can see a three-dimensional �3D� plot of
the two-body potential V in which it has two stable minima
at �� ,�� and �0,0� indicating the preferred state of the quan-
tum ring array at low � being the ferroelectric right or left
state.

It is surprising that the system orders ferroelectrically
along the chains. This occurs because the charge distribution
is quite broad. Using only the two lowest Fourier modes the
charge distribution can be written in general as ����= �1
+cos��−�0�� /2�, which nearly wraps around the ring. If we
change this to a �unphysical� flat charge distribution with an
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FIG. 16. �Color online� Results of numerical Hartree calcula-
tions of the polarization of a 1D quantum ring array threaded by
half-flux quantum � /�0=1 /2. For ���c the system displays a lon-
gitudinal FE polarization �squares�, while for ���c an antiferro-
electric AFE polarization �triangles� is observed.
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FIG. 17. �Color online� Plots of ground-state energy of the in-
teracting quantum ring array in the external magnetic flux threading
each ring for different couplings �. The physics is periodic because
of Aharonov-Bohm induced phase that is proportional to the flux.
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artificially varying width, the FE state has a lower energy
than the AFE state when the width ��� .45�, while for a
triangular distribution the FE distribution is favored when
���0.6�. While the exact transition depends of course
upon �, these calculations help explain why the FE phase
wins out at half filling.

VI. CONCLUSIONS

In this paper we have shown that there is a phase transi-
tion in a periodic array of electrons each confined to a 1D
ring. The parameter � determines if the array will spontane-
ously polarize; in 1D the transition is at ��10. It is easy to
achieve small values of � simply by choosing the ring sepa-
ration to be large. Thus, the “quantum” limit where the ki-
netic energy dominates is simple to obtain. To obtain the
antiferroelectrically ordered state we need large �. We may
write this as �= �R2 /a0D�� �m� /m�, where a0 is the Bohr

radius and m� is the effective mass of the electron. If R̃ and

D̃ are R and D measured in nanometers, and m̃��m� /m�,
then ��18.9�R̃2 / D̃�m̃. We require that the rings do not in-

tersect, so that D̃�2R̃. Thus, the ability to achieve large
values of � in semiconductors will depend upon the value of

the effective mass. If we set D̃=2R̃, then for GaAs �m̃
=0.06� 1D arrays of rings with a radius greater than �10 nm
will be polarized. For AlAs �m̃=0.4� the crossover radius is
about 70 nm. Rings with a smaller radius will not spontane-
ously polarize, but instead be isotropic

It is well known that in 1D there is no ordered state for
T�0 for the Ising model. However, for small arrays over
finite time intervals the system can order. To observe this
behavior we want the characteristic energies of the system to
be greater than the temperature. For the Coulomb energy

kT�e2 /D, which we may write as D̃T�1.8�103 where T is
in Kelvin. For the kinetic energy this means kT�� /2m�R2;

if we measure �m /m��R̃2T�40 in the same units. For GaAs
we can choose R to be about 14 nm at 4 K; choosing mate-
rials with a smaller effective mass or going to lower tempera-
ture allows us to increase the radius.

An AFE polarized ring array will scatter light at a wave-
length commensurate with the inter-ring separation, D. In 1D
there is a gap �2	0, which we may write as 2�2m̃�a0 /D�3/2.
For GaAs rings with a separation D=1000 nm this gives
	�6.0�1010 Hz. The 2D arrays have a similar sized gap at
zone center, but the gap vanishes at one zone edge. The
excitation spectrum can be probed optically, but scattering at
the edge of the zone is difficult due to the constraints im-
posed by conservation of energy and momentum. Typically,
in such cases Raman scattering can be used to investigate the
excitations.

While we have not explicitly addressed the 2D case here,
much can be gleaned from our results. The 2D classical
problem obviously has a finite temperature phase transition,
as shown by our Monte Carlo simulations. The 2D quantum
problem can be mapped onto the 3D XY model, which is
known to order. We have performed simulations on the 2D
case and find that it orders in a striped phase.

Finally, these calculations assume that each ring is singly
occupied. This might be obtained by fabricating the rings
upon a thin insulating layer covering a gate. By tuning the
gate voltage we can bias the system so that it is energetically
favorable for an electron to tunnel to the rings. The gate will
also serve to cut off long-distance interactions between the
rings, supporting the assumption of the nearest-neighbor in-
teractions used here. Moreover, this paper serves to start in-
vestigation into a broad class of problems, such as rings oc-
cupied by an optically excited exciton/hole pair or perhaps
by a small, varying number of electrons created by a random
distribution of dopants.

The topic of quantum dot arrays and their correlations has
obvious and useful analogies with solid-state models of crys-
talline arrays of atoms. In this paper we wish to point out that
experimentalists have at their disposal a host of “unnatural
atoms” analogs: rings, quantum dot quantum wells, quantum
rice, etc. The electrons in these nanoscale constituents are
confined to orbitals that may not have atomic analogs. More-
over, it may be possible to tune the shape of the constituent
to optimize some desired collective property such as frustra-
tion in electric or magnetic polarization, high susceptibility
or sensitivity to optical polarization of light. Even more rich
behavior will develop if we allow electrons to tunnel be-
tween these nanoscale periodic structures.

Finally, the model we have introduced in this paper may
have applications in implementation of quantum dot cellular
automata �QDCA�,20 hence electronic devices for classical
computation21 or even quantum computation,22 as well. In
QDCA, quantum nanoscale devices such as quantum dots are
used as “cells” and by manipulating the interactions inside
and outside of the cells �between neighboring cells on an
array� desired states can be achieved. In the original picture
of QDCA, two electrons are trapped inside a cell �consisting
of four dots� and by Coulomb interaction can take either of
the two possible polarizations. Interaction between cells is
also induced by Coulomb interaction or by application of
global fields. In principle, any binary state for each cell can
be considered as a representation for a “bit.”

In our model, ground and excited states may play such a
role. By tuning external control fields and interplay of Cou-
lomb interactions, global state of the array can be altered.
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FIG. 18. �Color online� Plot of the two-body potential function
in Eq. �28�. The interacting rings in magnetic field select the mini-
mum of this potential for their ground-state wave function at low
couplings. The potential is in units of ��2.
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Another potential application of linear arrays of atoms or
spins may be in quantum state/information transfer. That is,
the linear structure of the arrays together with tuned interac-
tions may act as quantum information bus.23 Due to exis-
tence of quantum coherence in the structure proposed here,
we think that our model may show features useful for quan-
tum computation or information processing. Detailed analy-
sis of such applications is an interesting subject per se, but
beyond the scope of this paper.
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APPENDIX: TRANSVERSE FIELD ISING MODEL

In this section we explain how one can write the projec-
tion of Hamiltonian �19� into ground and first excited state

subspace of Ĥ0 as a 1D transverse field Ising model �Eq.
�20��. In order to make the analysis easier we change the
variables �i to staggered one, �−1�i�i. Defining �0� and �1� as

ground and first excited states of Ĥ0 and E0 and E1 the cor-
responding eigenenergies we can write the up and down
states �Fig. 15� as

�↑� =
1
�2

��0� + �1�� ,

�↓� =
1
�2

��1� − �0�� . �A1�

Now we define the creation and annihilation operators:

c↑
†�↑� = c↓

†�↓� = 0,

c↑
†�↓� = �↑�, c↓

†�↑� = �↓� , �A2�

and one can show that

�c�,c�
†� = ���. �A3�

Thus we can write Hamiltonian �19� as

Ĥ = �
i=1

N

�
�,�=↑,↓

���ci�
† ci� + �

�ij�
�

klmn=↑,↓
Vklmn

ij cik
† cjm

† cjncli,

�A4�

in which i, j are spatial indices and

� =
1

2
��0 �

� �0
� , �A5�

where �0=E1+E0 and �=E1−E0. To calculate matrix ele-
ments of the potential we use a simple numerical Schro-
dinger equation solver to find the following quantities:

�↑ �cos ��↑� = �↓ �cos ��↓� � 0,

�↑ �cos ��↓� = �↓ �cos ��↑� � 0,

�↑ �sin ��↑� � + 1,

�↓ �sin ��↓� � �↑ �sin ��↓� = �↓ �sin ��↑� � 0. �A6�

In the above diagonal matrix elements of cos � are approxi-
mately zero because most of the wave function is localized
around �= 
� /2. For the same reason the diagonal matrix
elements of sin � are 
1. Using the above we can derive the
potential in the following second quantized form:

V̂ = − 2��2�
�ij�

�ci↑
† cj↑

† cj↑ci↑ − ci↑
† cj↓

† cj↓ci↑

− ci↓
† cj↑

† cj↑ci↓ + ci↓
† cj↓

† cj↓ci↓� . �A7�

Now we can use the Holstein-Primakov transformation18 to
construct the following SU�2� covariant operators for each
lattice point:

S+ = c↑
†c↓, S− = c↓

†c↑, Sz =
1

2
�c↑

†c↑ − c↓
†c↓� . �A8�

Using the above definitions and the fact that c↑
†c↑+c↓

†c↓=1
for each lattice point we arrive at the following expression
for Hamiltonian �19�:

Ĥ = − 8��2�
i=1

N

Si
zSi+1

z + ��
i=1

N

Si
x, �A9�

in which Sx,y = �S+
 iS−� /2.
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